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NOMENCLATURE 

r, radial coordinate; 

s, Laplace transform operator; 
L time ; 
T, temperature; 

Greek symbols 

&,), 

thermal diffusivity; 
wedge invariant ; 

6 angular coordinate ; 
t? 03 wedge angle ; 
4 = (s/cp; 

;I”: 

Laplace-transformed temperature; 
linearly transformed temperature. 

Functions 

f(r), deviation function of t&r, 0); 

g(r). deviation function of +(r, 0). 

INTRODUCTION 

THE CLASSICAL problem of the heat conduction in an infinite 
wedge is considered in a generalized sense. The basis for the 
treatment involved hinges upon the assumptions that a 
uniform initial temperature for the wedge enclosure and a 
constant surface temperature are prescribed a priori, and that 
the thermophysical properties of the homogeneous enclosure 
are independent of temperature. The first analytical solution 
for the time-dependent temperature field in such a wedge was 
due to Jaeger [l]. Jaeger’s solution involves only two 
parameters, the angular coordinate and a Fourier number, 
but consists of an infinite series of special functions. More 
recently, Budhia and Kreith [2] discussed the same problem 
as a special case in their treatment of the heat transfer with 
melting or freezing in a wedge, using the Green’s function 
given by Carslaw and Jaeger [3]. 

Two interesting observations have been made on 
rectangular wedges. Carslaw and Jaeger [3] solved the case of 
an external rectangular corner (a wedge angle of 90”) via a 
product solution approach and showed that the difference 
between the rate of loss of heat per unit time, per unit depth 
along the two bounding planes, from the corner surface and 
that without the edge effect, i.e. from a corresponding surface 
of a semi-infinite solid, is independent of the time variable.* 
The same invariability of the rate of loss of heat over an 
internal rectangular corner (a wedge angle of 270”) has been 
observed experimentally by Ruddle and Skinner [4] in their 
study of the heat extraction at corners in sand molds filled 
with molten aluminum-30% copper alloy, although they did 
not point out the invariability in explicit terms.t 

This paper is directed towards the generalization of the 
invariability for non-rectangular wedges. The analytical 
solutions mentioned above [l, 21 do not lend themselves to a 
direct investigation of the generalized invariability. The 

*See p. 172 of [3]. 
+See Fig. 5 of [4]. 

approach presented in this paper transforms the time- 
dependent problem into a steady diffusion problem for which 
a closed form solution is available [5]. By inversely 
transforming the steady diffusion solution into the space and 
time domain, it is shown that the invariability of the rate of 
loss of heat by conduction applies to all wedges. 

ANALYSIS 

The following analysis is intended to indicate the general 
nature of the invariability of transient heat conduction in 
wedges. It is to be shown that the integrated edge effect, 
defined as the difference between the rate of loss of heat per 
unit time, per unit depth along the two bounding planes, from 
the wedge surface and that from a corresponding surface of a 
semi-infinite solid, is independent of time for all wedges. 

An infinite wedge enclosure bounded by two half-planes is 
the domain of present interest. The space is represented by a 
cylindrical coordinate system as shown in Fig. 1 with the Z- 
axis being perpendicular to the page. The analytical solution 
of the 2-dim. heat conduction equation (l), complying with 
the a priori conditions (2), can be used to evaluate the local 
heat transfer rate per unit area at the wedge surfaces B = 0 or 
6 = e(), 

V* T(r, 0, t) = i $ T(r, 0, t) (1) 

with 

T(r, 8, 0) = 0, T(r, 0, t) = 1, T(r, BO, t) = 1. (2) 

As was mentioned previously, the currently available closed 
form solutions [l, 21 for the transient temperature field 
T(r, tl, r) in the above problem, do not lend themselves to a 
direct investigation of the generalized invariability. 

An alternative approach is to first Laplace-transform 
equations (1) and (2) with respect to the time t and obtain 

V2+(r,0) -i&r,@ = 0 (3) 

with 

4(r,O) = i, (4) 

FIG. 1. Coordinates utilized in problem formulation 
(0 < B0 < 2n). 
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where s is the Laplace transform operator and the Laplace- 
transformed temperature 4(r,0) contains s as a parameter. 

The above equations can be further simplified by a 
rearrangement of variables. Let 

W,(7) = a[9(r,S) - f] (5) 

V’$(r,e) - k’l(l(r,B) = 1 (6) 

with 

W, 0) = 0, W, 0,) = 0 (7) 

where I = (s/a)’ “. 
Equation (6) with given (I priori conditions (7) appeared 

previously in a steady diffusion problem associated with 
neutron absorption in control rods embedded within a 
medium where neutron diffusion length is l/1 and was solved 
independently by Hurwitz and Roe [6], and Levine [5]. 
Levine’s approach, based on a pair of integral transform 
relations, the so-called Grtinberg modification of the 
Kontorovich-Lebedev reciprocal formulas [S], is followed 
and the solution for +(r, 0) in the domain 0 < 0 < B,,, 0 < r 
< X, subject to the conditions (7), is 

+tr,e) = _ $ + & jr e-ii.rsinhn 

I 0 s -7 

x cosx TZ~ + cosecnq)dr7. (8) 
0 0 

It follows that T(r, 0, t) can be obtained by an inverse Laplace 
transform of $(r, e), obtainable from equation (8), and that 
the normal derivatives of Ijl(r, 0) at tl = 0 and 0 = B0 are 
symmetric with respect to the origin. Expression (8) can be 
used to calculate the normal derivative of $(r, 0) at 0 = 0. 

1 ati 1 ’ coshq 
- =__ 

r ae n=o 10, s 
~ sm(lr sinh II) dq. (9); 

’ sinh ? 

e0 

Equation (9) yields a special solution for (I,, = n, which 
corresponds to a simple I-dim. problem: 

1 ati 1 

r de H=O O,,=n 1 
(10) 

Levine then defined a useful difference function 

f(r)t=!2 _‘!!! I I r de H=O r de H=O 8,,=n 
(11) 

and obtained a deviation integr/al 

with l/i.’ being replaced by u/s. 

The above result enables one to define a similar difference 
function of the normal derivative of d(r,O) at 0 = 0 as 

134 
g(r)* = ;z _ - ‘2 I I (13) 

n-o r 30 O=O.ti,,=n 

*See equation (2.22) in [5]. 

tBoth f(r) and g(r) contain s as a parameter and can be 
explicity written asf(r, s) and g(r, s). 

:The deviation integral (12) is the final result obtained by 
Levine [S] and represents a corrective neutron absorption 
area of the control rod. 

and obtain 

!ng(r)dr=ij,coth’$&-&)d+ 

e, 
(14) 

A physical interpretation for expression (14) is essential. It 
represents, over a semi-infinite strip with unit depth in the z- 
direction across half the wedge surface, the integrated 
difference. of the normal derivative of the Laplace- 
transformed temperature at the wedge surface with respect to 
that without the edge effect (0, = a). The separation of the 
Laplace transform operator s from the integral in (14) renders 
a simple inverse Laplace transform into the original space and 
time domain. One can define a corresponding deviation 
integral as 

dq (15) 

which represents the integrated edge effect over the surface 0 
= 0. 

The fact that the right-hand side of (15) is independent of 
time t is striking. This leads to the definition of a deviation 
integral, over the two wedge surfaces per unit depth in the z- 
direction, that is a function of Q0 only. The time-independent 
deviation integral is denoted,by A(0,) and ., 

A(e,) = 2 drl. (16) 

The above deviation integral was termed, by Levine in 
solving the steady diffusion problem for an effective neutron 
absorption area [5], the corner correction function. However, 
in order to emphasize the extended utility as depicted by 
expression (15) it is felt that here A(0,) should be called the 
wedge invariant. A graphical representation for A(&,) vs B0 
was given by Hurwitz and Roe [6] and is reproduced in Fig. 2. 
The theoretical basis for the invariability of the rate of loss of 
heat by conduction, for all wedges, is thus established. 

FIG. 2. Plot of A(&,) vs 8,; after Hurwitz and Roe [6]. 
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CONCLUSIONS REFERENCES 
The analysis presented extends an available steady 

diffusion solution [S] to the solution ofa time-dependent heat 
conduction problem. In so doing it provides a theoretical 
basis for the invariability of the rate of loss of heat by 
conduction in wedges, namely, the difference between the rate 
of loss of heat per unit time, per unit depth along the two 
bounding planes, from the wedge surface and that from a 
corresponding surface of a semi-infinite solid being 
independent of the time variable. The analysis has found im- 
portant applications in the area of casting solidification [7,8]. 
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NOMENCLATURE 

correction factor used by Wender and Cooper [8] ; 
outer diameter of tube ; 
surface-to-volume mean particle diameter ; 
expanded bed height ; 
bed height at minimum fluidization ; 
bed-to-exterior time mean heat transfer 
coefficient; 
maximum value of h, as U increases; 
superficial gas velocity ; 
superficial gas velocity at minimum fluidization ; 
overall bed voidage ; 
bed voidage at minimum fluidization. 

INTRODUCTION 

WHILE many data have been published on heat transfer 
between immersed surfaces and gas fluidized beds, there are 
relatively few results for large-scale systems and for superficial 
gas velocities typical of industrial beds. During our 
investigation of heat transfer to horizontal tubes in the 
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freeboard region above fluidized beds [l], some results were 
also obtained for immersed tubes. These data, reported in this 
communication, are for a reasonably large column and at gas 
velocities and temperatures and entrained solids recycle 
conditions more representative of industrial practice than 
most previously reported data. 

METHODS 

The experimental column, constructed of stainless steel, 
was 0.254 x 0.432 m in cross-section and 3.0 m high. Quartz 
windows allowed observation and filming of the bed and 
surface behaviour. The column was heated externally by 
inconel tubular heaters of total power 21 kW braised to the 
walls of the column. The operating bed temperature was 
always in the range 385-425 K. A bundle of horizontal tubes 
of 25.4 mm o.d. was present in the column in four rows of four 
tubes each. All tubes were internally finned and made of 
copper with external chrome-plating to prolong life and 
reduce absorptivity to radiation. The centre of the lowest row 
of tubes was 0.76m above the gas distributor. The vertical 


